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Abstract

Necessary and sufficient conditions are established for cumulative processes (associated with

regenerative processes) to obey several classical limit theorems; e.g., a strong law of large

numbers, a law of the iterated logarithm and a functional central limit theorem. The key random

variables are the integral of the regenerative process over one cycle and the supremum of the

absolute value of this integral over all possible initial segments of a cycle. The tail behavior of

the distribution of the second random variable determines whether the cumulative process obeys

the same limit theorem as the partial sums of the cycle integrals. Interesting open problems are

the necessary conditions for the weak law of large numbers and the ordinary central limit

theorem. (- .---
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1. Introduction

In this paper we establish necessary and sufficient (N&S) conditions for several limits to hold

for appropriately normalized cumulative processes (associated with regenerative processes), with

the emphasis being on the necessity. The limits we have in mind are the limits in the strong law

of large numbers (SLLN), the law of the iterated logarithm (LIL), the weak law of large numbers

(WLLN), the central limit theorem (CLT) and functional generalizations of these, denoted by

FSLLN and so forth; we define the versions we consider precisely in §2. The topic of this paper

is very close to classic results, e.g., see Gnedenko and Kolmogorov (1968). Hence, there is

considerable related literature. In particular, our paper extends Smith (1955), Chung (1967),

Iglehart (1971), Brown and Ross (1972), Serfozo (1972, 1975), Whitt (1972), Glynn and Whitt

(1987, 1988ab) and Asmussen (1987).

We use the "classical" definition of regenerative process throughout; i.e., the process splits

into i.i.d. cycles; cf. p. 125 of Asmussen (1987). For the necessity results, this is without loss of

generality. Let 0<_ T(0) < T(1)< ... denote the regeneration times, with T(- 1) = 0.

Consider a stochastic process (X(t) : t > 01 with general state space and a measurable real-

valued functionf. We assume that the process { X(t) : t Z: 0 1 is regenerative with respect to these

regeneration times, and we focus on the associated cumulative process C a tC() •t 2 0 }.

defined by

C(t) = f(X(s))ds , t > 0. (1.1)

For
The key random variables associated with the cycles are

0
0

= T(i) - T(i - I),
Y1 TO) f(X(s))ds, 

(1.2)
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By "regenerative structure," we mean that for any suitable f the three-tuples

(T,, Y(f), Wi(f)) are ii.d. for i > 1. We also assume throughout that Er I < o. In addition,

we assume throughout that

foIf(X(s))Ids < - w.p.I for eacht, (1.3)
0

which implies that the cumulative process C has continuous sample paths w.p. 1.

We shall consider the given function f and a centered function f, defined by

f,(x) = f(x) - cx for a constant cc, both of which are assumed to satisfy (1.3). When we write

Y I or W1 we understand the functionf to be the given one.

We are interested in N&S conditions for the cumulative process to obey the classical limit

theorems. For this purpose, it is natural to represent the cumulative process as a random sum of

i.i.d. summands plus two remainder terms. In particular,

C(t) - Jf(X(s))ds = SNIe) + RI(t) + R2 (t) , t- 0, (1.4)

where

S, = Y + Y , n (1.5)

with So = 0, N • {N(t) : t _ 0) is the (possibly delayed) renewal counting process associated

with the regeneration times, i.e.,

N() = maxIi: T(i) S t} , t 0 , (1.6)

and Ri a {R (t) : t a 01 are the remainder processes, defined by

R ) = aminl.TOl f(X()ds and R,(t) r f(X(s))ds , ta0 . (1.7)fon = ,t >0. 1.7

Since EtI < oo, we have

t-IN(t) -4 X a I/ET I as t - w.p.i , (1.8)



which we will exploit frequently. Since IR1 ()j -< W0 , we see that the first remainder term

RI (t) in (1.7) is trivially dispensed with in limit theorems since it is bounded by a random

variable that does not depend on t. A sigmficant part of the analysis is finding what knocks out

the second remainder term R2 (t) in (1.7). Of course, the key relation here is

R,(t) 1<: WN(,) , t >: 0 .(1.9)

From (1.9) it is evident that we could just as well impose conditions on the supremum over the

integral from s to the end of the cycle instead of on WI (f). (This is to be expected since our

definition of regenerative process is time reversible.)

Given (1.4), it is interesting to compare N&S conditions for limit theorems for the cumulative

process C(t) with N&S conditions in the corresponding limit theorem for the random sums Sv,.

In turn it is interesting to compare the N&S conditions in the limit theorems for the random sums

SN(t) with the N&S conditions in the corresponding limit theorem for the ordinary partial sums

S, in (1.5). We state our main result in §3 so as to make these connections clear.

Here is how the rest of the paper is organized. In §2 we specify precisely what we mean by

the classical limit theorems. (It is important to note that there are several possible definitions.)

After we state the main results in §3, we establish some supporting propositions in §4. We

establish N&S conditions for the WLLN and a joint CLT for C and N in the case ftis nonnegative

in §5. We then prove the main result in §6.

2. The Clasucal Limit Theorems

In this section we indicate precisely what we mean by the classical limit theorems. For this

purpose, consider a general stochastic process Z a {Z(t) : t 0) with real-valued sample paths

having limits from the left and right. (Note that we consider only one process rather than a

sequence of processes.) By (1.3), the cumulative process C actually has continuous sample paths.
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but the random sums SNv(t) and the partial sums S, do not. Discrete-time processes can be

regarded as the special case in which Z(t) = Z([t]), where [t] is the greatest integer less than or

equal to t.

We say that Z obeys a SLLN if there exists a constant ot such that t-'Z(t) -- o: as t -- cc

w.p. 1. We say that Z obeys a FSLLN if there exists a constant ot such that, for each T with

0 < T < oo,

SIn-'Z(nt) - otl --+0 as n -- oo w.p.l . (2.1)

As in Theorem 4 of Glynn and Whitt (1988), such a FSLLN is actually equivalent to the ordinary

SLLN above, so we do not discuss it further. (To verify this, we use the existence of left and

right limits to conclude that sup IZ(s)I <co w.p.I for all t; e.g., see p. 110 of

Billingsley (1968).)

We say that Z obeys an LIL if there exist constants a and 03 such that I3 > 0 and

[Z(t) - ottl/xii tLj '- [- , w.p. 1, (2.2)

where Lx = max{ I, logex1, Lkx = Lk.-.1(Lx) and v denotes that the set on the left is

relatively compact with the set on the right being the set of all limit points of convergent

subsequences (with t k -* ** as k -4 c).

For the FLIL and FCLT we work in the function space D[0, cc) with the usual Skorohod (J)

topology, see Billingsley (1968), Whit (1980) and Ethier and Kurtz (1986). Following

Strassen (1964), we say that Z obeys a FLIL if there exist constants ot and 13 with 13 > 0 and a

compact set C in D[O, cc) such that

[Z(nt) - omnt]l/2j n v "C w.p. 1 (2.3)

where convergence of a subsequence is understood to be in D[0, cc) and the limit set C is the set
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of all functions {x(t) : t 0} that are absolutely continuous with respect to Lebesgue measure

with derivative x'(t) satisfying fo X'(t)2dt : 1. (This is the standard limit set associated with

partial sums of i.i.d. random variables.)

We say that Z obeys a W-LLN if there exists a constant ot such that t- I Z(t) => ot as t - cc,

where => denotes convergence in law, which coincides with convergence in probability in this

case because cx is deterministic. We say that Z obeys a FWLLN if there exists a constant ot such

that

[Z(nt) - ocntl/n =:, 0 in D[0, oo) as n * . (2.4)

We say that Z obeys a CLT if there exist constants ot and 03 with 2: _ 0 such that

[Z(t) - ottj/' =, 4-0N(0,1) as t - **, (2.5)

where N(0, 1) denotes a standard (mean 0, variance 1) normal random variable. We say that Z

obeys a FCLT if there exist constants (x and 03 with 0 _> 0 such that

[Z(nt) - cxnt]/')nn =: -,F B(t) in D[0,ao) as n -- **, (2.6)

where B() is standard (drift 0, diffusion coefficient 1) Brownian motion.

It is significant that in all the limit theorem above we have stipulated fixed normalization

constants. We always translate Z(t) by ot. In the LLN, LIL and CLTs we always divide

Z(t) - cxr by t, 42t'jt and 47T, respectively. Moreover in the CLT we have specified that the

limit be standard normal. For partial sums of i.i.d. random variables, these assumptions are

known to significantly restrict the range of possibilities; e.g., see Gnedenko and

Kolmogorov (1968). For example, for partial sums of i.i.d random variables, the CLT involves

the domain of normal attraction of the normal law, for which the N&S condition is for the

underlying distribution to have finite second moment; see p. 181 of Gnedenko and

Kolmogorov (1968).
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3. The Main Result

In this section we state, wherever possible, N&S conditions for the three processes S,, Sv(,p

and C() defined in (1.1), and (1.4)-(1.6) to obey the seven limit theorems: SLLN, LIL, FLIL,

WLLN, FWLLN, CLT and FCLT. (We have i;;dicated that the FSLLN is equivalent to the SLLN

in the setting of §2.)

To relate the limit theorems for the partial sums to the random sums and cumulative

processes, we assume that the summands Y, are of the form Y, (f,) for an appropriate centering

constant . When El Yi (f,)I < o, the parameter ot will be chosen so that E Yj (f,) = 0.

We prove the following in §6. More results in the casef is nonnegative appear in §5.

Theorem 3.1. (a) For the WLLN and CLT the N&S conditions for the random sums SN(t) and

the cumulative process C(t) are the same. For all other theorems, the N&S conditions for the

partial sums Sn and the random sums Stlvt) are the same.

(b) The specific N&S conditions for the partial sums S,, and the cumulative process C( t) are

given in Table 1, with a question mark indicating that the answer is unknown. Each established

N&S condition for the cumulative process is the N&S condition for the partial sum plus the

indicated extra condition.

(c) For the WLLJV and CLT, the N&S condition for the partial sums S. is sufficient for the

random sums SN(t) and the cumulative process C( t). Moreover, these conditions are necessary

in the sense that there are examples for which the random sum and cumulative process limits do

not exist when these conditions are violated (See Remark 3.2 below.)

(d) For the WLLN and the FWLL,, the centering constant (x is necessarily the limit of

E[ Y1 ; I I t] as t --* oo. In all other cases it is necessarily EY1 , which is consequently finite.

(e) The normalizing constant 1 in the LIL, FLIL, CLT and FCLT must always be the variance
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Var( Y1), which is necessarily finite for those limits.

Remark (3.1) We conjecture that the N&S conditions for the partial sums S,, in the WLLN and

CLT are also N&S conditions for the random sums SN(t) and the cumulative process C(t). This

would follow if the WLLN and the CLT in (2.5) for SN(,) were equivalent to the FWLLN in (2.4)

and the FCLT in (2.6), respectively, for SN(,), which we also conjecture to be true.

(3.2) The partial necessity result in part (c) of Theorem I is easily explained as follows: For

any distribution of Yl, we can construct a regenerative process such that N(t) = [t],

C([t]) = SN() = S[, I, and

C(t) = (1- t+ [t])C[t] + (t- [t])C([t] + 1) , t2:0, (3.1)

where [ t I is the greatest integer less than or equal to t; in particular, just let

X(t) = Y[,] , t_> 0. (3.2)

Hence, for the WLLN and CLT, the cumulative process C(t) and the random sum SNt) are

equivalent to the partial sum S11 . For such examples, the N&S condition for the partial sums

also obviously is the N&S condition for SN(t) and C(t).

(3.3) The SLLN result is due to Smith (1955); see Theorem 3.1 on p. 136 of Asmussen

(1987). The standard sufficient condition for the CLT is Var Y I(f) < w and Var tI < co, see

Theorem 3.2 on p. 136 of Asmussen (1987), which is stronger than our sufficient condition,

because we do not require that Var T I < o; see Proposition 2 below. To see that we could have

Vart 1 = o, suppose that Y,(f) =T, + Ui where Var Ui < o. Then Yi(f ) = Ui and

Var Y )(f) < for a= 1.

(3.4) The sufficient condition for the WLLN is weaker than El Y1 I< Co. Since

EIY I = fo P( YlI > t)dt, El YI < co implies that tP(I YJ > t) - 0 as t --+ For

example, if Y, has a symmetric distribution with P( YI > t) = A/t(logt)P for p < 1. then the
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conditions hold with EI Yl = o.

(3.5) To see that the established conditions on W, (fc) are needed in addition to the

conditions on Y1, consider the following example. Let P(T I = 2) = I and let f(t) = Zk for

2k - 2 < t < 2k - I andf(t) = - Zk for 2k - 1 S t < 2k, where {Zk : k > I } is a sequence

of i.i.d. random variables. Then P(Yi = 0) = P(Sn = 0 for all n) = 1, while

C(2k - 1) = Zk = Wk. Then apply Propositions 5-8 below.

4. Supporting Propositions

In this section we present several basic propositions that help establish and interpret

Theorem 1. The first four propositions show how the conditions on

Y(f,) a Y,(f - ot) = Y,(f) - ot1 I inTable I relate to conditions on Y(f),,tl and oa.

Proposition 1. If El Y (f,)I < co holds for some c. then it holds for all a. in which case

E YI(f,) = EYI(f) - otEt.

Proof. Note that

EIY(f) -tl 1 1 = EIY(f) - ot2T + (0t2 - al)'tl

< El Yl(f) - atl + Io2 - ot IET,

and recall that ErtI < cc. e

Proposition 2. A sufficient (but not necessar.) condition for El YI (f/)I ' < 00 for p > 1 is to

have El YI(f)IP < **and ET'I < cc.

Proof. By Minkowski's inequality, p. 47 of Chung (1974),

(El Y,(f.)lP)" P = (El Y,(f) - ot'1 IP)' p

S (El Y,(f)lP)"ip + ot(Erj) t /p

To see that the condition is not necessary, suppose that Y I (f) = t1., 0

Proposition 3. -1 WLLN holds for the partial sums of Y, ( fc) for one a if and only if it does for

all o. Moreover, the limit is y for Y(f - a I). if and only if it is y - (a 2 - aI ) X- 1 for
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Y(f - oa2 ).

Proof. Suppose that the WLLN holds for the partial sums of Y(f - ot). Since E'Tr < o, the

Ti obey a WLLN too. By Theorem 4.4 of Billingsley (1968),

n- ((Y,(f) _xli) (y,X 1) as n- o,
i--I i=l

so that by the continuous mapping theorem with the function h(x, y) = x - (oc2 - Cx )y, we

obtain

n -I Y Yi(f) -x oti y Y- (ot2 - o(x - as n7 -- M

As a corollary to Proposition 3, we obtain the following property of the N&S conditions in

the WLLN for the partial sums. A direct proof is also possible.

Proposition 4. (a) If

t P(I Yj (f,)f > t) - 0 as t -4 ac

for some c. then it holds for all o.

(b) If

E[Y, (f) - Ixl 1 ; I Y (f) - 1 r 11 :_ t] -+ y as t -4

then

E[Y,(f) - t2 tI Y; I(f) - oItil t] S y- (ai - a)X - as t -+00

Proof. We use Proposition 3 plus the fact that the conditions in Proposition 4 are known to be

N&S for the WLLN for partial sums of i.i.d. random variables; see p. 235 of Feller (1971). M

The conditions on W, (fe) in Table 1 can be established, explained and applied via the

following propositions.

Proposition 5. Let I Z, i > 1} be a sequence of i.i.d random variables and let O(t) be a
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deterministic function of t such that 0(t) - c as t - co. Then

O(n) - 1 max {Z,1} =:>0 asn---- (4.1)

if and only if

t P( IZt > 0(t)) -- 0 as t --, . (4.2)

Proof. Note that

P( max {ZIl} > E0(n)) = 1 -F(0(n))"

where F(x) = P(Z I I < x), so that (4.1) holds if and only if, for each E > 0, F(EO(n))" -4 1

or, equivalently,

n log(1 - FC(E£0(n)) --+ 0 as n - o, (4.3)

where Fc(x) = I - F(x). Since Fc(EO(n)) --+ 0 as n -* co, we can apply Taylor's theorem to

obtain

log(I - FC(e0(n))) = - FC(eO(n)) + O(FC(eO(n))2 )

Thus, (4.3) holds if andonly if nFc(E0(n)) --* Oasn -- c c. M

The following is a consequence of the Borel-Cantelli lemma; see Theorems 4.2.2 and 4.2.4 of

Chung (1974).

Proposition 6. Let { Zi i a I ) be a sequence of i.i.d. random variables and let a. be constants

such that a, -+ cc as n -- cc. Then the following are equivalent.

(i) Z/a n -0 w.p.J as n ---*c

(ii) max I.an - 0 w.p.l as n -c
I Sk~n

(iii) j P(1ZI I > an) < c.
nfl

If these properties do not hold, then lim IZn/an = cc w.p. 1.
n --4



As a consequence of Proposition 6, we have

Proposition 7. In the vetting of Proposition 6. if a, n, then a further equivalent property is

EIZ I <oo.

Proof. As in Theorem 3.2.1 of Chung (1974),

P(IZII !n)S <ElZl I 1  + I P(IZ IIn). n
n=l n=l

Proposition 8. Let c be a constant. 0 < c < 1. For any positive random variable Z

P(Z2 > nL 2n) S P L > nj S P(Z2 > cnL2 n)

for all sufficiently large n, so that

P(Z> L2n) <0
n=l

if and only if

P Z_> n <.
.,,l L2Z I

Proof. If(Z 2/L 2 Z) > n,thenZ 2 > n,sothat2LZ > Ln,L 2 Z > L 2 n - L2and

Z 2 > nL2Z > n(L2n - L2) > cnL2n

for all suitably large n. Next, note that g(x) = x 2/L 2 x is increasing for all x large. Hence, if

Z 2 > nL2vi, then

g(Z) = Z2 > g(NL ) nLn nL, n nL-,n

1LZ > L,n
LL nN 2  L - (Ln + L3 n) L

2

for all suitably large n. Hence, we have the desired inequalities. 0

We now show that the second remainder term R 2(t) in (1.7) is asymptotically negligible in
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the setting of the WLLN and CLT, because Et I < o. The asymptotic negligibility follows from

convergence without further normalization, for which we must distinguish between the lattice and

nonlattice cases. Recall that the distribution of T is lattice if P(Tr = kS) = I for some 8,
h=0

with the largest such 5 being the period; otherwise it is nonlattice.

Proposition 9. (a) If T has a nonlattice distribution, then R2 (t) => R,(o,) as t --+ oo, where

R, (t) is in (1.7) and R 2 (o) is a proper random variable with distribution function

<R x- ) = X) foP(R, (t) <5 x ; T I > t) dt .(44

(b) If T has a lattice distribution with period 5, then R 2 (kS + y) =, R,(oo) as k -- oo for

each,0< & and sup { IRz(k8 + y)I R'(o) as k oo, where Ry(oo) andR'(oo)
" " 0'y<

are all proper random variables.

Proof. (a) We apply the key tenewal theorem; see p. 120 of Asmussen (1987). For this purpose,

let g be a continuous nonnegative real-valued function of a real variable with g(t) < M for all t.

Note that E[g(R2 (t))] satisfies a renewal equation, i.e.,

Efg(R 2 (t))1 = E[g(R 2 (t)) 1 I , , + f E[g(R2 (t - u)) P(rn e du) , (4.5)

Where IA is the indicator function of the setA. Let z(t) w E[g(R2 (t))l I l We now show

that z is directly Riemann integrable, so that we can apply the key renewal theorem. For this

purpose, we apply Proposition 4.1(ii) on p. 119 of Asmussen (1987). Since z(t) < M, the

function z is bounded. Moreover, b(t) a g(Rz(t))l it, > ! as a function of t has a single

discontinuity at T I for each sample path. Hence, the function b is continuous w.p. 1 at all points t

for which P(-r = t) = 0. By the bounded convergence theorem, z(t) a Eb(t) is thus

continuous at all t for which P('r = t) = 0. Since P(rl = t) = 0 for all but countably many

t, z is continuous almost everywhere with respect to Lebesgue measure. Next, let
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ZA(t) = sup{z(y) :kh v< (k + )h} for kh < t < (k + )h (4.6)

as on p. 118 of Asmussen (1987). Since z(t) <- P(T I > t),

J:h(t)dt < E P(r1 > h) < 0o
0o k=0

by Proposition 7 above. Hence, we have shown that z is indeed directly Riemann integrable. The

key renewal theorem thus implies that Eg(R (t)) --- X :(u)du as t -o o. However, all

bounded continuous nonnegative functions g determine convergence, so indeed R 2 (t) => R2 (oa)

as t --- 0. Moreover, we can characterize the limiting distribution using these functions g, so

that (4.4) holds.

(b) The argument is essentially the same; we apply discrete-time renewal theory along

subsequences; see pages 8 and 121 of Asmussen (1987). Note that we have the renewal equations

k
P(R 2 (k8 + y) > x) = P(R 2 (k8 + y) > x, " I > k) + , P(R 2 ((k - j)6 + y)P(TC = j)

j-0

and

P( sup IlR 2,(kS+y) I >x) = P( sup {lR.(kS+y)l} >x, T, >k)
O~y< 0y

k
+ I P( sup { R 2 ((k - j)S + y)} > x)P('ti =j),

j.0 0 5 Y <

where

P(R(kS + y) > x, "eI > k) < P('t > k)

and

P( sup fljR(k8 + Y)j > x, T I > k) _<P('r I > k)

with P(zt > k) < .sinceETI < . *
k-O
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Under our i.i.d. conditions, functional versions of the WLLN and CLT for the partial sums are

equivalent to the ordinary versions. For this purpose, we can apply Theorem 2.7 of Skorohod

(1957), which we now quote.

Proposition 10. (Skorohod (1957)) Let { U, i I } be i.i.d for each n and let

[nil
Z,(t= ( U,,, t > 0. Then

Z,(t) =:> Z(t) as n -- oo in D[0, )

where Z has stationary independent increments, if and only if Zn (t) = Z(t) as n -- c in R for

each t.

5. A Joint Central Limit Theorem

In this section we consider a joint CLT for the cumulative process C and the counting process

N. We obtain a necessity result in the case El Y, I < 00, which holds when f is nonnegative;

necessity in the general case remains open.

Remark (5.1) Even without the i.i.d. conditions, limits for the counting process N alone hold if

and only if the corresponding limit holds for the associated partial sums; see §7 of Whitt (1980),

Theorems 3 and 6 of Glynn and Whitt (1988a) and Theorem I of Glynn and Whitt (1988b). For

example, as a consequence, N satisfies a CLT if and only if Ert, < oo. For this we apply

Theorem 6 of Glynn and Whitt (1988) and Theorem 4, p. 181, of Gnedenko and Kolmogorov

(1968). a

We start with a necessary condition for the WLLN whenf is nonnegative.

Theorem 2. Suppose that f is nonnegative. Then a N&S condition for the WLL.Ns for S", SNI(I

and C(t) is El Y, I < oo.

Proof. If f is nonnegative, then Y, = W1, so that El Y, I < c is sufficient for the three SLLNs

by Theorem 1. Iff is nonnegative, then the N&S condition for the WLLN for S, in Table 1 is
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equivalent to El Y, I < oo. By Proposition 9, the WLLNs for SN(t) and C(t) are equivalent.

Hence, suppose that C(t) obeys a WLLN, i.e.,

t-1 o (X(s))ds = (x as t - cc (5.1)

On the other hand, suppose that El Y = I . Since we havef 0, we can apply the SLLN to

conclude that

n Y(f) oo w.p. 1 as n - oo (5.2)

(see Exercise 1 on p. 130, of Chung (1974)), from which we can deduce from the SLLN proof in

Theorem 1 that

t-1 f(X(s))ds --c w.p. 1 as t -- o. (5.3)

(Recall that W, = Y, when f 0.) Hence, (5.1) cannot hold and we must have

EIY (f)I < oo. U

Remark 5.2 An alternative approach to Theorem 5.2 (pointed out by A. Pukholskii) is to note

that the WLLN for C(t) implies the FWLLN because the sample paths are nondecreasing. This

argument also depends critically onf being nonnegative.

We now state N&S conditions for the joint CLT.

Theorem 3. If E[c] I < -c and El YI (f) 2 ] < c, then (C(t), N(t)) obeys a joint CLT, i.e.,

t-C'2(C(t) - oat, N() - X ) =* N(O, E) as t -4 cc in R 2  (5.4)

where X = 1/Er i, ax = IEY1 (f) and N(0, 1) is a bivariate normal distribution with covariance

matrixelements l = XE[ Y (f) 2 1, 1,2 = 3Var 1T1 and 1 2 = X2E[Y1(fc)'].

(b) If El Y, I < co, then the joint CLT (5.4) implies that E[ Y, (f) 2 ] <,,andE[] <cc.

Proof. (a) the sufficiency is a minor extension of Theorem I of Glynn and Whitt (1987). First.

by the multivariate version of Donsker's theorem, the conditions imply a joint FCLT for the
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partial sums of( Y (f),z, ), i.e.,

n,'' Y(YiJ) - E[Y,(f)) (T, - ETI) (B,,), B, (t)) (5.5)

in D{O, oo) x D[0, oo), where (B I , B2) is Brownian motion. Then by continuous mapping

arguments we obtain a joint FCLT for SN(,) and N(t), i.e.,

-
t N (Y,(f) - EY,(f)) N(nt) - Xnt => (BI(t),B,(t)) (5.6)

as n - oo in D[O, w,) x D[O, oo). The joint FCLT (5.6) is obtained in Glynn and Whitt (1987).

It in turn implies an ordinary CLT by applying the continuous mapping theorem with the

projection. This ordinary CLT is

Nft)

t (Yi(f) - EYI(f)) • N(t) - Xt) ; N(O, 1) (5.7)
5ii

for the stated 1. The result (5.7) then is equivalent to (5.4) because the remainder terms are

asymptotically negligible; i.e., by Proposition 9, t- 112 R 2 (t) * 0 as t -+ 00. Hence, (5.4)

follows from (5.7) and the converging-together theorem, Theorem 4.1 of Billingsley (1968).

(b) Turning to the necessity, we reverse the argument and note that (5.4) implies (5.7),

because the difference is asymptotically negligible, by virtue of Proposition 9. Now we apply

Theorem 7(a) of Glynn and Whitt (1988a), for which we use the assumption that El Y, I < "0. It

implies that

t - /2 ~Yk(fc).. k kcj) D as t-+cc, (5.8)

which with the converging-together theorem, Theorem 4.1 of Billingsley (1968), implies that the

partial sums of Yi(fc) obey a CLT. As before, Theorem4 on p. 181 of Gnedenko and

Kolmogorov (1968) then implies that E( Yi (f)21 <a.. By Remark 5.1, the CLT for N implies
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that E[t2I < oc.

6. Proof of Theorem I

(a) SLLN

The condition El Y1 I < oo is well known to be N&S for the partial sums S,, in (1.5) to obey

the SLLN; see p. 126 of Chung (1974). Since

N(t) SN(t) SNOf)
-", (6.1)t N(t) I

(1.8) implies that the same condition is N&S for the random suns SN(,). Since

ICt - SNI)lI < 1RI(t)l + IR 2(t)l < IRI(t)l + WN(r)+I (6.2)

by (1.4) and (1.7), and

N(0)+ 1 Wv()+i _ WV()+1 (6.3)
t N(t)+ I t

Proposition 7 implies that El Yi I < o* and EW1 < 0 are sufficient for the cumulative process

C(t) to obey the SLLN.

Now we establish the necessity for C(t). Suppose that t - C(t) -* yw.p.l as t - y, where

0 < y < oo. First, since

C(Tk) Ri(Tk) Sk k= RIO+ - , k(6.4)
Tk Tk k Tk

and (1.8) is equivalent to k- Tk --+ X- w.p.1 as k a* *, we see that then n-'S,, - -

w.p. I as n -+ oo, which implies that El Y I < cc andy= y XE[ Y1 .Next suppose that EWI = 0,.

Then, by Proposition 7,

1im n I W n > 0 w.p. , (6.5)
pa -.-4

(indeed, even im n - W, = w.p.l) so that there is a sequence of random times I 3 k : k 1}
n -+"
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such that T., < 0 k < T,.,+ and

iM ' Ok f(X(s))ds > 0 (6.6)

so that

Fit_ f(X(s)ds > im 7-k 1fT f(X(s))ds = EY, " (6.7)
k --#0 k --+ * 0

i.e., then t- C(t) fails to converge w.p.l as t --* , so that assuming EWI =o leads to a

contradiction. Hence, the SLLN for C(t) implies that EW1 < 0.

(b) LIL

The condition E[Y2(fc)] < 00 is well known to be N&S for the partial sums of Y,(f,) to

obey the LIL with 13 = Var Yj (f,); see Strassen (1966), Heyde (1968) and pp. 297-8 of Stout

(1974). Since

SN(:) SN(t) t L2 t (

42N(r)L 2 N(t) 4[2tLz t N(t) L2 N(t) (6.8)

and ( 1.8) implies that

S-L2 t w.p.l as t--, (6.9)N(t) L 2N(t)

the LIL holds for the partial sums if and only if it does for the random sums; for SN(,).

13 = X Vat Yj (f,). By (6.2), we establish sufficiency for the cumulative process if we show that

W- I(f) 0 w.p.l as r -4 . (6.10)
;t'L2 f

By (6.9), it suffices to show that

W,1 (fe)
-*0 w.p.l. as n -- c. (6.11)4Rn Lzn
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To establish (6.11), we use Propositions 6-8. Proposition 7 with the condition on W, (f,)

implies that W,, (f,)/nL. W, (f,) -4 0 w.p. I as n - oo. Propositions 6-8 then imply (6.11).

Turning to the necessity, from the LIL for C(t), we obtain the LIL for the partial sums

themselves by considenng the subsequence of times { T(n) : n > 1 ). By the known converse of

the LIL for the partial sums, we deduce that we must have E[Y2(fC)] < cc. Finally, if the

moment condition on W, (f,) is violated, then, by Proposition 7,

P > (f] = > . (6.12)L, L'Wn (fl)

By Proposition 8, (6.12) implies that

P [ W. (f, ) > ."ni§T n c (6.13)
n=

i.e., by Borel-Cantelli,

- Wn(fc)
im >0 w.p.1. (6.14)- Nlri l n

As in the necessity for the SLLN in (6.6) and (6.7), (6.14) implies that there are random times 3 k

with T., 0 1 k < T,,,I such that

fl= > 0. 1 _ Jf(X(s))ds = Var Y .(6.15)
li-" Xs) s im4
- " 4~kL z k k- . ~rT k L 2  Tk f

(c) FUL

In our i.i.d. setting, the sufficient condition for the LIL implies the FLIL for the partial sums

of Y,(f,); see Strassen (1964). Since the FLIL implies the ordinary LIL, by virtue of the

continuous mapping applied to the projection at time I, the N&S condition for the LUIL for the

partial sums is N&S for the FLIL for the partial sums. By (1.8) the SLLN holds for N(t). As

before, the SLLN for N(t) is equivalent to a FSLLN of the form
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N(nt) X.t w.p. I in D[0, oo) as n - o. (6.16)
n

Using the random time change by N(nt)/n in D[0, o.), which is a continuous map (see §17 of

Billingsley (1968) or Whitt (1980)), we obtain

SNP1 - - C' w.p.l in D[0, oc) as n -- + , (6.17)

where C' is the set of y in D[0, oo) such that y(t) = x(Xt), t > 0, for x in C, and C is the limit

set associated with the partial sums. As before, the FLIL for the random sums implies the

ordinary LIL, which we saw in part (b) implies the LIL for the partial sums.

To establish the FLIL for the cumulative process C(t), we apply the moment condition on

W, (f,). With , noment condition, Propositions 6-8 imply that

(nL~n) - /  max {Wk(fC)} -- 0 w.p.l as n -- -c. (6.18)

I SkSn

Then (6.16) and (6.18) imply that

(nL2n) - ' max {Wk(fc) -+ 0 w.p.I as n - oo . (6.19)
I SkSN(n) + I

Given the FLIL for the random sums, (6.2) and (6.19) imply the FLIL for C(t).

Turning to the necessity for the cumulative process, we obtain the FLIL for the partial sums

by considering the times T(nt)/n. (The first remainder term is obviously asymptotically

negligible.) Hence, E[ Y2(fc)] < - is a necessary condition. Since

T(N(n t) -+ tin D[O,oo) w.p.1 as n -+c*, (6.20)
n

we have the joint limit

(nL2n) /( JO f,(X(s))ds, f JTV(n)) f,(X(s))ds) v-4 (C, C) w.p. 1 (6.21)
s n0

as n --- ** in D[O, **) x D[0, 00). Hence, the normalized difference converges to 0. i.e.,
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(nLjn r n) f,(X(s))ds -4 0 in D[0, oo) w.p. I as n - (6.22)

or, equivalently, (6.19) holds, which in turn is equivalent to (6.18) given (6.16). By

Propositions 6-8. (6.18) implies the moment condition on W, (f,).

(d) WLLN

The stated conditions for the partial sums in Table 1 are known to be N&S; see Theorem I on

p. 235 of Feller (1971). By Proposition 10, the WLLN implies the FWLLN for the partial sums

in this setting. Alternatively, it is not difficult to show that the conditions are N&S for the

FWLLN directly. Since the FWLLN implies the WLLN, we only need demonstrate sufficiency.

Instead of (7.4) and (7.5) on p. 234, 235 of Feller (1971), we write

P( sup IS,,,, -tinnI > nx) "! P( max IS' - kn'I > nx)
05. t ; I I SkSn

+ P(Sk * Sk' for some k, 1 < k < n)

E(X2 )
+ nP(IXtI > s.)

nx-

using Kolmogorov's inequality in the second step. The rest of the argument is the same.

The FWLLN for the partial sums in turn implies the FWLLN for the random sums, by virtue

of a random-time change argument (as in § 17 of Billingsley (1968) or §3 of Whitt (1980)). The

FWLLN for the random sums implies the ordinary WLLN. By applying the continuous

projection map at t = 1. (Alternatively, the WLLN for the random sums follows directly from

the WLLN for the partial sums; see Theorem 10.1 on p. 148 of Revesz (1968).)

Finally, the WLLN for the random sums is equivalent to the WLLN for the cumulative

processes by (6.2) and Proposition 9. In particular, since IRI(t) < Wo, RI(t)/t =* 0 as

t - oc; Proposition 9 implies that R2 (t)/t =*> 0.

(e) FWLLN



- 22 -

The sufficiency for the partial sums and random sums follows from the argument in part (d).

Given the FWLLN for the random sums, the FWLLN for the cumulative process follows from the

extra condition on WI(f,), Proposition 5 with Z, = W,(f,) and 0(t) = 1, and (6.2). In

particular, the extra condition on W, (f,) and Proposition 5 imply that

n-I max Wk(fC) = 0 as n -- (6.24)

I Sk~n

or, equivalently,

n -1  W [,, ( f ) = 0 a s n -- o in D [0 , o ) . (6 .2 5 )

Then, by a random time change argument,

n-1 WN(,m)+I(fc) => 0 as n -- cc in D[0, o,) (6.26)

or, equivalently,

n- 1 max {Wk (fC 0 as n -c ,, (6.27)
I S k5 SN(n) + I

but, by (6.2),

sup {ln-'S.,) - n-'C(nt)S} n -Wo + n- ' max {Wk(fC)} • (6.28)
OSS I IS k 5 N(n) + I

We now turn to necessity. Given the FWLLN for the random sums, we obtain the FWLLN

for the partial sums by applying the converse to continuity for composition, i.e., Theorem 3.3 of

Whitt (1980). A direct application yields the FWLLN for the partial sums in D((O, oo)), with an

open interval at the left, but this implies convergence in D[a, b] for all a and b with

0 < a < b < o, which in turn implies convergence in D[O, m0) for the partial sums of i.i.d.

random variables. We have already seen that the FWLLN for the partial sums implies the

condition on Y I (fc).

Turning to necessity he cumulative process, first we apply a random time change

argument to get the FWLLN for the partial sums, which in turn implies the condition on Yj (fc).
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In particular, n - T(nt) t , as n - in D[0, o), so that

o= n 1  f,(X(s))ds - n-1RI(nt) 0 as n -o in D[0, oo) . (6.29)

Finally, to establish the condition on W, (f,), we note that T(N(nt) -t I as n - cc in

D[0, oo), so that

n-I ( fc(X(s))ds, j T(Nnff(X(s))ds) (0, 0) as n - o c (6.30)
0 "0

in D[0, cc) x D[0, oo) and

n t _ (Nni

n-t [Jfo(X(S f,(X(s))ds] =;> 0 as n - oo as n --* oo in D[O, -c)(6.31)

which in turn implies that

n-  max Wk(fC)< sup {n-i- f,(X(s))ds0 Oasn-- oo (6.32)
O0< k S N(nt) 0O 15 1 fT(NiI

and then, reversing the argument from (6.24) to (6.27), we obtain (6.24), which by Proposition 5

implies the condition on W, (fe).

(f) CLT

By p. 181 of Gnedenko and Kolmogorov (1968), E[yI<(fc)] < c and E[Y,(f)] = 0 is

N&S for the CLT for the partial sums. Donsker's theorem or Proposition 10 implies that this

condition is also N&S for the FCLT.

Given the FCLT for partial sums, we obtain the FCLT for random sums by a random time

change argument as in § 17 of Billingsley. As usual, the FCLT for the random sums implies the

ordinary CLT for random sums by applying the continuous mapping theorem with the projection

at t = 1. Just as in part (d), the CLT for the random sums is equivalent to the CLT for the

cumulative process, because R,(t)/=?, 0 and R2(t)/01t 0 as t-- cc, the last by

Proposition 9.
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(g) FCLT

The necessity and sufficiency for the partial sums and the sufficiency for the random sums

follows from the argument in part (f'. The rest of the argument is just as in part (e).

Acknowledgment. We thank Karl Sigman for helpful discussions.
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partial
limit sums cumulative process

theorem S" C(t) Jf(X(s))ds

SLLN El Yj < oo + EW1 < oo

LIL E[Yi(f,) 21 < 00 + E[ W,(fc)/L- W,(fc)] < 0

FLIL E[ Yj(f,) 2 1 < oo+ E[ W I(f,)/L,W, (f,) I < -o

tP(I Y1 I > t) - 0
WLLN and

E[YI1 ;YIj 1 -< t] -* (x as t -- 4

t P(I YJ I > t) --+ 0
FWLLN and + t P(W (f) > t) -0 as t oo

E[ YI; I [ < t] -4 ot as t--00

CLT Et Y(f,) 2] < 0

FCLT E[Yl(fc) 2 ] < _0 + t2 P(WI(f) > t) -0 as t -co

Table 1. Necessary and sufficient conditions for the processes to obey the indicated limit
theorem. For the established cumulative process results, the condition is the stated
one plus the condition for the partial sums at the left.
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Abstract

Necessary and sufficient conditions are established for cumulative processes (asociated with

regenerative processes) to obey several classical limit theorems; e.g., a strong law of large

numbers, a law of the iterated logarithm and a fuxctional central limit theorem. The key random

variables are the integral of the regenerative process over one cycle and the supremum of the

absolute value of this integral over all possible initial segments of a cycle. The tail behavior of

the distribution of the second random variable determines whether the cumulative process obeys

tie same limit theorem as the partial sums of the cycle interals. Interesting open problems are

the necessary comtion for tie weak law of large numbers and dte ordinary central limit

theorem.
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